檀缨:“完美的圆我们能做出来么?”
吴孰子:“不能。但它存在,便如天道一般。”
檀缨:“很好,我与范画时说的无限小,也正是这样的存在,你可理解一些了?”
吴孰子:“数理之道殷实确凿,唯证可破。你在此含糊其辞,只是耽误所有人的时间罢了,莫学那名家。”
檀缨:“谈不上耽误,我只是随便举一个谬数,岂料你竟如此坚称。”
吴孰子:“那你又从何而知,圆周率为谬数呢?”
檀缨苦笑:“我当然可证,但要用范画时的《流算》证。”
吴孰子:“此为以谬证谬,不证也罢。”
檀缨:“好了,我想到另一个谬数了。”
吴孰子:“请。”
檀缨:“勾股定理,可是谬论?”
吴孰子:“此为实论。”
檀缨:“那若勾1、股1、弦应为几?”
吴孰子:“2的开方。”
檀缨:“此数该如何用‘整数之比表达’?”
吴孰子:“与圆周率相同,要等我们做出完美的三角,方可测得,最终的结果一定是可以用‘整数之比’来表达的。”
檀缨:“不如说得再确切一些,2开方的最终结果,可以用一对‘互质的正整数之比’表达,对么。”
吴孰子稍思:“对的,这个描述更为严谨。”
檀缨:“那么这个结论,你可有证明?”
吴孰子:“此乃数理之基,不证自明。若无此基,则数与数之间会布满了不可描述之谬,若无此基,则万事万物皆由无可尽数之谬组成,若无此基,则数理无存,世界无存,天道无存,你我亦无存。”
檀缨叹:“我有些领略你的想法了。”
吴孰子:“我亦早已理解了你与范画时的悖谬,尔等欲将世间万物碎化为无穷无尽的,不可理解的,微小的谬,此为盲信之教,非天道也。”
檀缨