这种做法就好比你要用电脑设计一个物理模型,某天你恰好得到了一台主机。
这台主机经过初步检测,跑分啊、启动啊、上网啊、下片啊这些功能都没什么问题。
因此你对它的内部构造虽然好奇,但由于物理模型的设计要紧,所以你就没去管具体零部件的情况直接开机使用了。
而眼下徐云点出的这个环节就相当于在告诉他们:
亲,这台电脑的cpu某个线程有问题哦——不是被人刻意动了手脚,而是厂商从生产环节便出现了纰漏,连厂商自己可能都不知道哟~
想到这里。
陆光达便忍不住拿起徐云面前的稿纸和笔,认真的看了起来。
众所周知。
中子运输方程的框架很广,不过其中特别重要的概念不多,满打满算也就十来个而已。
而在这些概念中。
对数能降无疑是一个非常重要的概念。
它指的是中子在物质中运动时能量的损失率,表达式是u=ln?e0/e。
其中e0是中子散射前的能量, e是中子散射后的能量, u就是对数能降。
有了能降的概念以后。
便可以定义某种物质的平均对数能降了。
也就是中子与这种原子每次散射所产生的平均能降:
ξ=Δuˉ≈2/(a+2/3).
这个是平均能降的近似计算式,可对原子量a大于10的原子使用。
这样就可以计算出以某种原子制作的材料作为靶心时,中子平均需要散射多少次才能从e0降到指定的e:
n?e0?ln?eξ。
举个例子。
中子从 2mev (裂变中子平均能量)慢化到 0.0253ev的能降,就是u=ln?e1/e2=18.185