tbt单元,也就是在bt单元上接有两个氟原子的单元,主要是从文献中总结的经验。
为了保证变量尽可能的少,除了引入的两个氟原子外,其他条件均未改变,包括支链的数量和位置等等。
根据现有文献报道,在聚合物给体中,引入氟原子有很大的概率能够提升其光电性能。
研究者们往往都是报道个例,站在实验结果层面来描述引入氟原子的优点。
比如,能够提高材料的光吸收系数,提高载流子迁移率,提高共混薄膜形貌等等。
但是,目前还没有人从理论上、或者分子级别上说明氟原子的作用。
包括究竟什么样的体系适合引入氟原子还仍不明晰。
不过,这也正常,实验科学本身就是以经验为主的,很多问题解释不了,便直接当做定理拿来用即可。
许秋之前大致统计过,有九成以上的体系在加氟原子后,性能均有所提升,提升的幅度各不相同。
当然,实际上可能没有达到九成,因为肯定有很多加氟原子后性能降低的体系,这样的文章没有发表出来。
自己的结果究竟如何,还是需要实验后才知道。
可是目前看来,似乎出现了一些问题。
p2tbt4t的溶解度也太低了。
但不管怎么样,实验还是要继续的,把产物完全处理出来,制备器件,测试性能,结果自然会见分晓。
……
许秋在第三批反应的五个反应瓶中均加入封端剂,开始封端反应。
然后他回到a501,打开电脑,准备检索文献。
有机光伏领域的文献数量还是不少的,哪怕许秋只看一二区的文献,一个月也有几十篇。
而像是钙钛矿这样的热门领域,一个月甚至能有上百篇文献。
文献数量如此繁多,指