电感与电抗互补度越大,就越容易产生电气谐振,专业的说法会引发负阻尼现象,简单的说法就是共振,每个中学物理老师在讲共振的时候都会举一个例子——一队士兵经过一座坚固的桥,正常走过去,步伐不统一,没任何危险,可他们要闲着蛋疼列队踏正步过去,每个人的每只脚都以相同的频率作用于可怜的桥体,如果这个频率正巧与桥体的固有振荡频率相同,那么可怕的共振就发生了,桥体将会承受数倍于之前的压力,甚至可能会坍塌。
电气谐振就是一个复杂版的共振,贯穿于整个系统,直接振到发电机,当电气谐振频率与汽轮发电机大轴中某个机械扭振的频率达到互补条件,次同步谐振就此产生,这数百公里中积蓄的被抵消能量,就会突然找到一个突破口,疯狂地发泄在这根可怜的大轴上,这将是对发电机毁灭性的打击,相当于把人类的脊椎骨拧成麻花。
北漠将来动辄数亿元的超临界机组,谁敢让他背负拧成麻花的危险?
尤其在我国,大家升官发财,都求个稳,迄今为止只在110kv-330kv输电线路中,以很低的补偿度试过水,面对500kv的超高压输电网,面对60万千瓦的超临界机组,就算岳云鹤敢了,其它人就敢吗?
一题三问,经历过如此复杂的思考过程,张逸夫才将将回答了两问,前面老师此时咳了一声,从座位上起来,朗然道:“收卷了,都停笔吧。”
这句话基本是扯淡的。没半个人停笔,这份卷子人类不可能做得完,包括张逸夫。
最关键的第三问。他还是一片空白,再抬头看。收卷老师走到这里大概也只需要30秒而已。
30秒的时间,聊出抑制次同步振荡的有效方法,阐述一段历经10年的论证?
方法很多,有效的却很少,高效的几乎只有一种。
30秒的时间,够写出这唯一的一种了吧……