是2和导子。
吴桐未从启赋状态下脱离,abc猜想的证明,再次为悟道石碑即将见底的继续力量充入了不少力量积累。
这份力量,虽然不足以助力悟道石碑再进一步,但是用来支持吴桐的启赋状态,却是还能再维持一定的时间。
吴桐在群论上玩得娴熟,在数论上更是就几乎无人可及。代数特别是代数簇是她第一次踏足研究重大课题的领域,却不是她陌生的版块,深入学习数学到如今,吴桐能自信的说一声,她在数学上,没有过于陌生的领域。
代数和几何,本就是她预定研究的下一个重点问题,只是她突来念头,做起了abc猜想。又在研究abc猜想证明的基础上,窥见了向bsd猜想进发的灵感。
对于灵感的到来,相信没有任何人会拒绝的,吴桐自然是当机立断的抓住,紧随着灵感的方向,急需的推演起来。
她从傅里叶级数做计算,然后在用泛函分析的连续函数延伸,介入朗兰兹纲领转换群论·····
所谓阿贝尔簇也就是域上的几何整的完备群概形,它一定是射影、光滑、交换的。一个代数群,它同时又是完全代数簇。
因为已经有了一定间就基础,吴桐在法尔廷斯之前解开泰特猜想推广使用阿贝尔簇的想法和计算方式,找到了前进方向的灵感,这些灵感虽然不能让她立即解开bsd猜想,但吴桐,可以确定,沿着这条路继续走下去,她是可以走向终点的,这一点儿,已经比什么都重要了!
当然,这是其中最困难的一部分是毋庸置疑的。但是吴桐还是想要尝试一下,自己能否完成这个难题。
她这次可以说,并不是从零开始,而是在她拿手的拔高优化版块进行愉快的突破。
启赋状态的消耗非常,时间有限,吴桐在寻到方向悟道石碑就几乎耗尽继续能量,被迫自动切断启赋状态。
当