就在陈决的指导下,将一块大型数据盘插入了机器当中,顺带从里面读取了一份最新型的芯片设计图出来。
“果然是原子级别的精度!”
“连xyz轴的参数都注明了极限位移能够达到0.1纳米!”
“0.1纳米的干式光刻?我感觉自己就像是在做梦!”几个陪同操作的技术人员看到显示器上的数据后,都忍不住惊叹了起来。
反倒是林卫国在旁边有些苦涩地抿了抿嘴。
因为0.1纳米这个加工精度完全超出了他们所的芯片设计图纸精度上限!
要知道,现目前的集成电路设计图可是动不动就包含上百亿个晶体管。
像最新型的麒麟系列9000芯片,内置了cpu和gpu两种功能,它的晶体管数量更是达到了150亿以上。
这还只是运用了传统的5纳米工艺!
一旦提高到0.1纳米,相当于把加工精度在原有基础上提升了50倍。
光刻的精度越高,晶体管之间的间隔缝隙被缩小,一块芯片上能被利用的空间就会被近乎无限一样放大。
加工精度高了50倍以后,单块同样大小的麒麟芯片上的晶体管数量,可不是简单的1x50那样提升。
而是会呈现指数级爆拉!
能一口气把晶体管干到千亿甚至万亿以上!
可问题是,这种堪称魔鬼一样的超级芯片的机器确实是被陈决搞出来了,但是相应适合0.1纳米工艺芯片图纸却没有现成的。
毕竟种花家在eda芯片设计这块同样与国外存在不小的代差,能研发eda图纸的企业和单位放眼全国都是寥寥无几。
哪怕是林卫国所在的光电所,最高也只能拿出几款百亿级的芯片设计图。
面对眼前这台陌生的白色机器,此刻的林卫国感觉自己像是回到了自己刚参加工