经典的‘筛法’。
历史上,所有哥德巴赫猜想相关证明进展,利用的都是筛法,筛法,也就是筛选法,理解起来很容易。
首先把自然数按次序排列起来,从数字1开始,1不是质数,也不是合数,要划去。
第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。
2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。
3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去……
这样一直做下去,就会把不超过n的全部合数都筛掉,留下的就是不超过n的全部质数。
这个方法听起来很简单,实际上,因为筛选过程是无穷尽的,就必须要用到数学分析方法,涉及到的是组合数学问题。
组合数学,一定程度上就可以为离散数学。
广义上来说,组合数字的分析就是离散数学,但实际应用来说,狭义的组合数学是离散数学除去图论、代数结构数理逻辑后剩下的部分。
离散数学,就是王浩的‘拿手好戏’。
所以对于陈景润的研究论文,王浩很容易就读懂了,了解了其中的方法逻辑。
同时也做了一个判断--就像是数学界普遍的看法,陈景润先生已经把筛法运用到了极致,也只完成了‘1+2’的证明。
换句话说,这条路是走不通的。
就好像是对于π的确切数值的研究,哪怕是用计算机计算几百亿位,也不可能得到精准的π数值,π,依旧只能用符号表示,而不是一个确切的数字。
换句话来说,单纯用计算的方法,不可能解出一个无理数,而用‘筛法’也不可能证明‘1+1’问题。
王浩放下了手里的论文,不由得感慨一句,“哥德巴赫猜想,要证明好难啊!”