来,只要能够确定一种分子的分子式以及分子结构,那就可以先通过软件去预测超导,不必在一一的测量了。
对于超导物质的发现,绝对是革命性的一个成果。
但很快,徐佑也冷静了下来。
“虽然建模程序做出来了,但是,需要验证的数据量,确实是太大了。”
现在,摆在徐佑面前的,是一个排列组合问题。
每一次的模拟,徐佑需要在100多种化学元素中,抽取几种元素,并确定每个原子的数量,原子之间的结构方式等等信息。
这样一来,需要测量的物质种类,可以说是近乎无限的。
这样庞大的数据量,甚至比围棋中所有可能出现的棋局数量还要多得多。
连超级计算机,也无法在有限的时间内,完成所有的计算。
“怪不得高温超导体那么难发现。如果不能确定高温超导体的范围,这真的比大海捞针还要困难。”
即使真的存在常压下的室温超导体,也不知什么时候,才能将其找到。
想到这,徐佑决定,还是要先将几个条件的范围缩小一下。
“先选取几种最有可能构成超导体的元素,将每种原子的数量限制在200个之内……”
像目前已知的常压下温度最高的超导体, 就是hg12tl3ba30ca30cu45o127这种奇怪的分子式。
徐佑大致估算了一下,在缩小条件范围之后,所有组合的可能性个数。
“数量还是太过庞大了。普通计算机肯定是无法完成计算的,看来又要用到超算了。”
徐佑估摸着,用这个方法去寻找新的高温超导体的话,光是用在超算电费上的支出,就绝对非常不菲了。
但相比之下,这应该是最快捷的一种方式了。
如果一种材料一种材料的去合成