努努书坊

繁体版 简体版
努努书坊 > 走进不科学 > 第834章 好久不见,小牛(大结局)

第834章 好久不见,小牛(大结局)(4 / 10)

矢量磁位,因此得到电流分布的a,对a做微分运算就可以得到b。

对▽x▽xa=μj化简可得▽^2a=-μj,即矢量泊松方程,在直角坐标系下等价为三个标量泊松方程。

非常简单,也非常好理解。

这玩意儿和高温超导之前也存在一定关系,因为在电磁场中运动的电子总是伴随着带一个相位,这个相位其实就是磁矢势。

“.”

随后坐在薛其坤身边的王老想了想,对徐云问道:

“小徐,你继续吧,详细解释一下伱的这个理论。”

徐云见状再次点了点头,这次没有再用ppt了,而是拿起粉笔在一旁的黑板上写起了板书:

“某种意义上来说,超导就像击鼓传花,电子就像小朋友,小朋友坐在自己的位置上没动,所以不会互相碰撞产生电阻,而他们手上传的花就是那个无质量的相位。”

“因此从这个思路切入,可以在紧束缚模型下写出一个规范不变的哈密顿量,也就是uhu=∑ijtijcieiaijcj+h其中aij=θiθj。”

“电子向左和向右跳,会附带一个正负的相位,这就是超导电流的主要来源,如果计算局域电子数 ni=cici随时间的变化,也就是海森堡方程,以及连续性方程nt+jx=0,很容易得到流算符.”

“在临界温度以下,电子配对形成copper pair,并且凝聚到bcs基态——到这一步步骤为止,bcs理论依旧是成立的。”

“然后接下来我的思路是.”

说到这里。

徐云刻意顿了顿:

“对超导体的能隙函数做费米面结构近似。”(见449章,又是一个跨越了400章的伏笔)

早先提及过。

所谓费米面,指的其实是动量空间的等能面。

『加入书签,方便阅读』