i▽替换,就可以得到-????/??t??=-▽??+m??,即▽??-????/??t??-m??=0
让它两边作用在波函数Ψ上得Ψ=0,这就是大名鼎鼎的克莱因-戈登场方程。
算符????在洛伦兹变换下是四维标量,即??‘??=????静质量的平方m??是常数。
要使克莱因-戈登场方程具有洛伦兹变换的协变,即将方程Ψ=0时空坐标进行洛伦兹变换后得到的Ψ‘=0形式不变,唯一要求就是洛伦兹时空坐标变换后的波函数Ψ‘=Ψ就达到目的了,这样的场叫标量场。
如果让洛伦兹变换特殊一点,保持时间不变,而在空间中旋转,这样旋转后的波函数Ψ‘=expΨ。
这就是说在时间t不变的情况下,波函数Ψ的空间坐标矢量x在角动量s方向旋转无穷小α角后变成矢量x‘。
而波函数Ψ变成expΨ=Ψ‘,并且Ψ=Ψ‘。
唯一的办法就是让自旋角动量s=0,这说明克莱因-戈登场方程描述的场粒子自旋为零。
非常简单,也非常好理解。
换而言之.....
玻色子确实如同徐云所说的那样,可以分成标量玻色子和矢量玻色子。
“......”
过了片刻。
赵忠尧胸口微微起伏了两下,整个人深吸一口气,平复好心绪后继续看向了王淦昌手中的第三方报告。
如果考虑到矢量玻色子的影响......
那颗强子的末态位异常就不难解释了:
强子也是一种典型的复合粒子,内部存在一种矢量规范玻色子的结构完全称得上合理——这也是朱洪元他们归纳的‘元强子’的一种嘛。
某种意义上来说,这个解释甚至有点....索然无味?
不过赵忠尧却