在纸上写下了一个公式:
q=
ne。
这个公式的由来很简单。
在第一个步骤中,法拉第利用静电计测量一定时间内金属筒获得的电量q。
若进入筒内的微粒数为n,每个微粒所带的电量为e,那么q便是n和e的乘积。
接着法拉第又翻了一页书,写下了另一个公式:
w=
n·1/2mv2。
这个公式的意义同样非常简单:
经过同样时间后读出温升,若进入筒内微粒的总动能w因碰撞全部转变成热能,那么上升的温度便可以对标计算出总动能w。
而微粒既然是粒子,那么它的动能也便一定符合动能公式——防杠提前说一下,动能公式在1829年就提出来了。
其中的m、v分别为微粒的质量和速度,乘以微粒数就是总动能。
接着只要求出最后磁极偏转的微粒运动轨道的曲率半径r,以及磁场强度h。
那么便可得:
hev=mv2/r。
将上面三个公式互相代入,最终可以得到一个结果:
e/m=(2w)/(h2r2q)(感谢起点,现在后台总算优化一些了.....)
而e/m,便是........
荷质比!
所谓荷质比,指的便是带电体的电荷量和质量的比值,有些时候也叫作比荷。
这是基本粒子的重要数据之一,也是人类推开微观世界的关键一步。
当初在听徐云讲波动方程的时候,为了弥补法拉第的数学水平,曾经给他打了个高斯灵魂附体的补丁。
不过今天高斯已经到了现场,徐云就不需要再考虑请神了。
只见高斯取过纸笔,飞快的在纸上演算了起来。
五分钟后。
这位小老头随意将笔一丢,轻轻的抖了抖手上的算纸。
只见此时此