波是怎么传到远方去的呢?
我们的手只是拽着绳子的一端,并没有碰到绳子的中间,但是当这个波传到中间的时候绳子确实动了。
绳子会动就表示有力作用在它身上,那么这个力是哪里来的呢?
答桉同样很简单:
这个力只可能来自绳子相邻点之间的相互作用。
每个点把自己隔壁的点“拉”一下,隔壁的点就动了——就跟我们列队报数的时候只通知你旁边的那个人一样,这种绳子内部之间的力就叫张力。
又比如我们用力拉一根绳子,我明明对绳子施加了一个力,但是这根绳子为什么不会被拉长?
跟我的手最近的那个点为什么不会被拉动?
答桉自然是这个点附近的点,给这个质点施加了一个相反的张力。
这样这个点一边被拉,另一边被它邻近的点拉,两个力的效果抵消了。
但是力的作用又是相互的,附近的点给端点施加了一个张力,那么这个附近的点也会受到一个来自端点的拉力。
然而这个附近的点也没动,所以它也必然会受到更里面点的张力。
这个过程可以一直传播下去,最后的结果就是这根绳子所有的地方都会张力。
通过上面的分析,便可以总结出一个概念:
当一根绳子静止在地面的时候,它处于松弛状态,没有张力。
但是当一个波传到这里的时候,绳子会变成一个波的形状,这时候就存在张力了。
正是这种张力让绳子上的点上下振动,所以,分析这种张力对绳子的影响就成了分析波动现象的关键。
接着徐云又在纸上写下了一个公式:
f=ma。
没错。
正是小牛总结出的牛二定律。
众所周知。
小牛第一定