学,难道肥鱼先生已经推导出了波运动的数学表达式?”
徐云依旧没有直接回答这个问题,而是继续在纸上写了起来。
他先在之前绘制出的函数图像上做了个基础的坐标系。
又在x轴方向上画了个→,写上了一个v字。
这代表着一个波以一定的速度v向x轴的正方向运动。
接着徐云解释道:
“首先我们知道,一个波是在不停地移动的。”
“这个图像只是波在某个时刻的样子,它下一个时刻就会往右边移动一点。”
法拉第等人齐齐点了点头,
这是标准的人话,不难听懂。
至于波在下个时刻移动了多少也很好计算:
因为波速为v,所以Δt时间以后这个波就会往右移动v·Δt的距离。
随后徐云在其中一个波峰上画了个圈,又说道:
“在数学角度上来说,我们可以把这个波看成一系列的点(x,y)的集合,这样我们就可以用一个函数y=f(x)来描述它,对吧?”
函数就是一种映射关系,在函数y=f(x)里,每给定一个x,通过一定的操作f(x)就能得到一个y。
这一对(x,y)就组成了坐标系里的一个点,把所有这种点连起来就得到了一条曲线——这是货真价实的初一概念。
接着徐云又在旁边写了个t,也就是时间的意思。
因为单纯的y=f(x),只是描述某一个时刻的波的形状。
如果想描述一个完整动态的波,就得把时间t考虑进来。
也就是说波形是随着时间变化的,即:
图像某个点的纵坐标y不仅跟横轴x有关,还跟时间t有关,这样的话就得用一个二元函数y=f(x,t)来描述一个波。
但是这样还