努努书坊

繁体版 简体版
努努书坊 > 走进不科学 > 第二百五十七章 见证奇迹吧!(上)

第二百五十七章 见证奇迹吧!(上)(11 / 12)

偏导数tanθ=?f/?x,原来的波动方程就可以写成这样......”

随后徐云在纸上写下了一个新方程:

t(?f/?xlx+△x-?f/?xlx)=μ·Δxa?2f/?t2。

看起来比之前的要复杂一些,但现场的这些大老的目光,却齐齐明亮了不少。

到了这一步,接下来的思路就很清晰了。

只要再对方程的两边同时除以Δx,那左边就变成了函数?f/?x在x+Δx和x这两处的值的差除以Δx。

这其实就是?f/?x这个函数的导数表达式。

也就是说。

两边同时除以一个Δx之后,左边就变成了偏导数?f/?x对x再求一次导数,那就是f(x,t)对x求二阶偏导数了。

同时上面已经用?2f/?t2来表示函数对t的二阶偏导数,那么这里自然就可以用?2f/?x2来表示函数对x的二阶偏导数。

然后两边再同时除以t,得到方程就简洁多了:

?2f/?x=μ?2f/t?x2。

同时如果你脑子还没晕的话便会发现.....

μ/t的单位.....

刚好就是速度平方的倒数!

也就是说如果我们把一个量定义成t/μ的平方根,那么这个量的单位刚好就是速度的单位。

可以想象,这个速度自然就是这个波的传播速度v:

v2=t/μ。

因此将这个值代入之后,一个最终的公式便出现了:

?2f/?x=?2f/v2?x2。

这个公式在后世又叫做......

经典波动方程。

当然了。

这个方程没有没有考虑量子效应。

如果要考虑量

『加入书签,方便阅读』