努努书坊

繁体版 简体版
努努书坊 > 科技之锤 > 130 好巧的毕论选题

130 好巧的毕论选题(2 / 7)

要让果肉尽可能长时间新鲜,起意思就是要让果肉暴露在空气中的面积最小,也就是这一刀下去,要让切片的面积最小,这当然是可以实现的。

但这又可以引申出一个更高级的问题,那就是三维的这一结果在高维空间是否也能成立。

用具体的数学语言描述就是,一个任意维度的凸体,如果用低一维的平面去平分,那么是否存在一个常数 c,让凸体至少存在一个切面的面积大于 c。

这就是在普通人群中并不算太著名但却极具实用价值的kls猜想问题。

生活中的三维空间这个命题其实很好理解。

因为无论西瓜长成什么样,总不可能在每个角度都长得如同细条。如果是长形的西瓜,竖直一刀切下去,切面就会较小,当然也可以用水平角度来切开它,这样切面就会大上许多。

可如果放到更高维度,就不是这么简单了。

但大家都很清楚,数学家天生就不是能让人省心的主,对于一个问题,他们总能从各种奇怪的角度来解读。于是数学界又提出了一个命题,为什么切开的西瓜要是平面?

能不能找到用来平分这个西瓜的最小曲面面积是多少?

这就是kls猜想最为关注的问题。

随着数学家进一步抽象,kls 猜想可以理解为这个西瓜在高维空间中的形状就是一个封装着气体的容器,找到最佳切面就是寻找到这个容器的瓶颈。想象一个,如果西瓜变成一个哑铃形状的容器,里面有一个气体分子在其中随机运动,那么哑铃中间连接部分越细,分子就越难跑到另一侧。

所以现在韩教授真正要解决的问题就是,找出在高维空间中这个凸的容器最细的地方到底能有多细。

说的更简单更粗暴就是要证明是否存在这么一个常数c,在任意维度这个常数c都是固定数值,如果有那么就说明这个西瓜

『加入书签,方便阅读』