米,另一个6毫安每平方厘米,那么最终表现出来的电流就会在6毫安每平方厘米左右。
对于第一个电池来说,就会直接损失大约40%的效率。
电压方面的问题倒是不大,各个电池之间近似是线性叠加的,比如一个是0.8伏特,另一个是0.7伏特,那么最终就是1.4、1.5伏特的样子。
除了短路电流方面的问题,另外还有加工工艺上的问题。
有机光伏领域现有文献报道的叠层器件,大多数都是双结两终端的结构,在制备叠层器件时,两个电池中间需要有一层电荷复合层,通常采用的是导电的电极材料。
而这层电极必须是透光的,因为如果不透光,下层的电池就废了,没有光可吸收了。
透光的电极,比如ito,不能通过溶液法制备,只能用磁控溅射等方法。
而磁控溅射的话,一方面温度高,可能破坏有效层的结构,另一方面,一台磁控溅射的设备,一般需要50-80万,就用来做个ito电极,有点大炮打蚊子的意思,除非是那种大课题组,经费花不完,才会买一台用用。
基于ito制备困难的现状,主流的思路是采用金属电极作为电荷复合层,需要解决的主要问题就是透光性。
其中一个方法,可以采用薄的金属电极作为电荷复合层,比如蒸镀几纳米的银,可以兼顾导电率和透光率。
日常生活中的金属不透光,本质是金属原子把入射的光子都吸收或反射了,而在几纳米这个尺度下,哪怕是金属,也可以透光,当然,透光率不会太高,可能在50%左右。
这种方法的优点是制备工艺简单,只需要修改蒸镀电极时的厚度即可,缺点则是透光性不理想。
另外一个方法是采用银纳米线、银纳米颗粒等方法,优点是透光性会好一些,缺点是制备工艺比较复杂。
总