路径非常清晰,就是把两种有效策略进行组合,从而得到新的受体材料。
不过,当他下达合成包括idic-4f、idic-m等材料的指令时,却被系统提示“无法执行当前指令,请提升实验技能,或提升权限等级”。
“有点类似于我之前尝试让模拟实验人员合成ieico-4f时模拟实验室的反馈啊。”
许秋分析了一番,大致推断出来了原因,两种给体的聚合反应是他已经熟练掌握的stille偶合反应,因此模拟实验人员可以直接操作。
而ieico-4f、idic-4f、idic-m这些材料,中途有些合成步骤他并没有亲自操作过。
比如ieico-4f的前几步反应,涉及了噻吩单元上的长链烷氧基侧链的引入,这步反应许秋只知道反应过程,但没有亲手实操过;
idic系列也是同理,引入直链烷基,用到的卤代烃反应,他也没有实操过。
不过,许秋也不急,假期很长,可以先等两种给体材料的结果出来。
如果效率没有突破,他就手动把那几种受体材料合成出来,反正现在模拟实验室i也有16倍加速,一两天的时间基本就能够搞定。
第二天一早,许秋便被系统的消息刷屏,整个人打了个激灵,顿时清醒了过来。
【检测到宿主制备的有机太阳能电池器件效率达到12.88%,已打破有机太阳能电池领域光电转换效率世界纪录(12.21%),且提升幅度超过0.5%。进阶任务已完成,获得20000积分,权限等级+1。】
【当前权限等级为7级,模拟实验系统i、ii升级,解锁模拟实验系统iii。】
【检测到宿主当前主要研究方向为:有机太阳能电池。】
【获得进阶任务(二选一):以第一作者/第一通讯作者身份发表sc