片之类,这些功能单一的工业配件芯片,用40纳米工艺生产,也没有什么问题。
毕竟现阶段国外的高端cpu、gpu之类,还在用40纳米工艺,那些电控芯片之类的工业芯片,大多数用64~80纳米工艺。
就算是这些芯片,短时间内无法上市销售,也可以用来自己使用,反正燧人公司内部的子公司众多,随着智能化时代的逼近,这些专业的工业芯片,需求量同样会越来越庞大。
通过一边自己内部使用,一边完善芯片设计工艺,为未来打下基础。
看了纳米线半导体的相关进度,黄修远又看了下一个项目。
“玻璃存储器?”他有些惊讶,这是半导体实验室的一个研究员,申请的研发项目。
这个叫苗国忠的研究员,设计了一种特殊的玻璃存储器,这种玻璃的核心技术,在于硅9分子中的同分异构体——异硅9分子。
与会形成硅纳米镀层的正硅9分子不一样,异硅9分子本身在紫外激光照射下,和变成硅6分子和三个单独的硅原子。
而异硅9和硅6,两者光反射是不太一样的,异硅9偏向于反射蓝光这个频段,硅6则偏向于反射黄光这个频段。
如此一来,就可以通过激光改变异硅9,形成两种反射光点,实现信息的刻写。
根据苗国忠团队的实验数据,目前他们在实验室中,可以在1平方厘米的面积上,实现86g的数据存储量。
由于复合在玻璃内部,就算是储存几千年,都不会出现数据丢失的情况,如果再加上硅纳米镀层,外力也很难破坏玻璃存储器。
唯一的缺点,就是刻录数据后,玻璃存储器就基本不可修改了,也就是说玻璃存储器是一次性的,当全部储存点被刻录了,就不能再储存数据了。
黄修远翻了翻详细的测试数据,还发现了另一个问题,那就是读取速度