的典型。
赵奕最开始所论证的光子,也只是玻色子中的一个典型,现在他则是要论证玻色子,等于是从典型跨越到整体,对费米子的论证也是如此。
利用数学架构出典型的难度,和架构出整体的难度,绝对不是一个级别上的。
这也是超对称问题论证的关键。
只要架构出费米子和玻色子的能量组成,后续就只是在架构的基础上,进行数学、物理角度的‘对称分析’了。
……
费米子和玻色子的能量构架,是超对称问题论证的核心。
赵奕花费了一个半小时,对费米子和玻色的能量架构进行分析,并一一填上最初始能量点位的数学理论取值。
后续再以数学方程、函数的形式,进行边缘能量架构的总结。
然后,对比。
论证到这里就差不多了。
通过数学论证的对比,已经能看出两者理论对称的影子,只要进行详细的分析,就可以得出结论了。
好多人已经准备鼓掌。
但是赵奕的论证却没有结束,他还有个核心内容没有讲,也就是对于整体数学架构的计算、分析,来证实费米子、玻色子形成之初,就已经具有对称性。
这一部分可以用简单的数学例子来理解。
比如,以数字0为对称点。
-7、-4、-2、1、2、3、5以及-17、3、4、5、7,两组数据的对称性在哪里?
如果把两组数字相加在一起,很容易得出结论:前一组数字之和是-2,后一组数字之和是2。
粒子初始形成的数学构架要复杂太多了。
赵奕完成了费米子、玻色子的能量架构,就开始对整体数学构架进行论证,好多人都不知道他究竟要说什么,因为这一部分内容在论文的最后,似乎有些‘附带内容’的